
1DAo 155 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION AETC F/6 9/2
OMPA OARISON OF SOME RELIABLE TEST DATA GENERATION PROCEIURES.(U)

APR 81 R A DENILLO. D E HOCKING. M J MERRITT DAAG29-80-C-OI2OUNCLASSIFIED IT-CS-8lf0& M

EmmmmEEmn-mEmEnmmEEEnm.EEE
EEEEEEEEElr:

* I

I-

:,,. . . /

DTIC
2 i LECTE

0

IdalDISTRIBUTION STATEMENT A

.j Approved for public release;
Distribution Unlimited

School of

Information and Computer Science

GEORGIA INSTITUTE

OF TECHNOLOGY81 8 08 005

@ LEVEL
GIT- ICS-8/08

A CCWARISON OF SOME RELIABLE
TEST DATA GENERATION PMM)DUES t

Richard A. DeMillo*
Daniel E. Hocking**
Michael J. Merritt,,

April, 1981

DTIC
SJULL9 1981J

B
*School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

**U.S Army Institute for Research
in Management Information and Computer Science
Rmn. 105 O'Keefe Building, OTT
Atlanta, Georgia 30332

+Work supported in part b%, U.S. Army Research Office, Grant #DAAG29-80-C-0120
and by Office of Naval Research, Grant /N00014-79-C-0231.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

A COMPARISON OF SOME RELIABLE TEST DATA

GENERATION PROCEDURES +

Richard A. DeMillos

Daniel E. Hocking*

Michael J. Merritt*

Accession For

NTIS GFP&I
DTIC TR -
Unannounc (--
Just i l' . c

April, 1981

B y - -- - - - -

Ava i1 , !t i 1 0

Dist .; ,

School of Information and Computer Science ,f"
Georgia Institute of Technology V

ktle.nta, Georgia 30332

SU.S. Army Institute for Research
in Management Information and Computer Science
Rm. 115 O'Keefe Building, GIT
Atlanta, Georgia 30332

+Work supported in part by U.S. Army Research Office,

Grant #DAAG29-80-C-0120 and by Office of Naval Research,
Grant #NO0014-79-C-0231.

A COMPARISON OF SOME RELIABLE TEST DATA

GENERATION PROCEDURES
+

Richard A. DeMillo*, Daniel E. Rocking*, Michael J. Merritt*

Abstract

A set of mutants of a program P. M(P), is a finite subset of the
set of all proprams written in the language of P, and EM(P) is

the set of programs in M(P) which are (functionally) equivalent
to P. For a set of test data T, DM(P,T) is the set of programs
in M(P) which give results differing from P on at least one point
in T.-\ A mutation score for P,T is defined as follows:

IDM(P,T) I
ms(P,T) =-

IM(P) I-IEM(P) I

As described elsewhere, it is possible to choose the function M
so that ms(P,T) = 1 only if T demonstrates the correctness of P
with high probability.

This paper is a case study of four test data generation

schemes. For a fixed program P, five sets of test data are

generated and mutation scores are calculated using the FMS.2
mutation system. Since each set has a score less than one, the

FMS.2 system is used to derive a set T such that ms(P,T)=l.,--

Keywords: software reliability, program testing, mutation.

- School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

U.S. Army Institute for Research

in Management Information and Computer Science
Rm. 115 O'Keefe Building, GIT
Atlanta, Georgia 30332

+Work supported in part by U.S. Army Research Office,

Grant #DAAG29-80-C-0120 and by Office of Naval Research,
Grant #NO0014-79-C-0231.

I

Section 1. EHTP.ODUCTION Page 1

SECTION 1

INTRODUCTION

There are currently many suggested procedures for choosing input

*data for software testing [1,7,8,10,12,13]. In this paper we

describe an experimental technique for the relative evaluation of

different test data generation procedures, and present the

too, results of one such study comparing five testing methodologies.

Mutation analysis [1,4,5], a tool for the evaluation of

* individual test data sets, is used to generate a mutation score,

0 ms(P,T.) K 1, where P i s a program and T. the test data
* 1 1

generated by procedure i. Within certain constraints discussed

FA below, data sets with high mutation scores may be judged superior

to those with low scores. Mutation scores for data sets

generated by the various methodologies provide an objective

evaluation of those methodologies, when applied to the particular

program studied. Repeating this procedure with a variety of

programs would provide a tool for the overall evaluation of test-

ing methodologies.

Section 2 RELIABILITY OF TEST DATA Page 2

SECTION 2

RELIABILITY OF TEST DATA

When a program P behaves correctly on a single test input,

t, it is differentiated from an infinite subset of Prog(P) (all

programs in the language of P), the subset of programs that

behave incorrectly on input t. Since an infinite number of

programs in Prog(P) differ from P on only one input, testing

alone cannot establish program correctness unless it is

exhaustive. This is of course impossible for most practical

situations.

Thus, testing cannot be used to establish program

correctness-- but it can be used to increase confidence in a

program's correctness. Two sets of test data often differ in the

levels of confidence they engender--one is said to be more

reliable than the other. An example would be two sets of data, T

and T', such that T a T': T' is more reliable than T.

Measuring Reliability

Let M(P) C Prog(P) be a finite subset of the programs in

the language of P and let EM(P) S M(P) be the subset of M(P) of

programs equivalent to P (ije., programs that compute the same

function). Finally, let DM(P,T) E M(P) - EM(P) be the subset of

non-equivalent programs in M(P) that behave differeutly than P on

some input from the set T of test data. We define the mutation

score for program P and test data set T to be the fraction of

Section 2 RELIABILITY OF TEST DATA Page 3

non-equivalent programs differentiated from P by T:

IDM(PT)I
ms(P,T) =

IM(P)I - IEM(P)I

Notice that ms() is determined by the language and by the set

M(P). Thus, the mutation score is a practical method for compar-

ing the reliability of test data sets provided only the set M(P)

is chosen to meet two criteria:

I) ms(P,T) is easy to compute, and

II) confidence in the correctness of P increases

as ms(P,T) approaches 1.

Furthermore, if P is known to be correct, the mutation score may

be used to compare the reliability of test data selection

methods; one method is more reliable than another if it produces

more reliable test data sets.

Mutation Theory

Mutation analysis is one method of choosing M(P) to satisfy

the I and II above. In mutation analysis, each element of M(P)

is generated from P by introducing some small change into P--the

set M(P) is the set of mutants of P. Each change is meant to

simulate a simple programmer error [51. These changes are

introduced according to rules called mutant op.RgAtor, different

types of errors being introduced according to different operators

(a complete discussion of mutant operators appears in [I]--

explicit examples of program mutants are presented later in this

paper).

Section 2 RELIABILITY OF TEST DATA Page 4

The errors introduced by mutant operators simulate actual

program errors made by competent programmers in practice [1].

Provided P is correct, the elements of M(P) are the programs with

single errors that a competent programmer is most likely to

produce in place of P. The more frequently such likely errors

are detected by a set of test data (the higher the mutation

score), the more confidence one can acquire that the program has

no such single error. Empirical evidence supports the assumption

that test data sufficient to detect single errors suffices to

detect erroneous programs with multiple errors as well (1,2,3].

Additional evidence that this choice of M(P) satisfies II is the

observed reliability of programs tested by data sets with high

mutation scores (1,4,61.

Prototype automated mutation systeps, described below, have

been used to compute mutation scores for a large number of

programs, in three languages [1]. Theoretical studies and run-

time observations suggest that mutation scores may be

economically computed for even large programs [6,9], so that this

choice of M(P) also satisfies I.

A mutation system generates the set M(P) by applying mutant

operators to P. Using appropriate optimizing heuristics, it then

interprets the program and its mutants, running them on test data

provided by the tester. Any mutant which produces output differ-

ing from the original program is 'killed,' and removed from

further consideration. Some mutant programs will perform

identically to the original program on all inputs--these are

eguivalent mutants, the set EM(P). As the testing process

Section 2 RELIABILITY OF TEST DATA Page 5

continues, the tester may view individual mutants or apply

automated heuristics in order to determine if they are

equivalent. A program passes the mutation analysis once all non-

equivalent mutants have been killed by some input. Of course,

the original program must have been judged by the tester to have

performed correctly on all test data. if P is known to be

correct, the set of mutants killed by a set of test data T is

exactly the set DM(P,T) (the 'dead mutants' of P) needed to com-

pute ms(P,T).

Section 3 CASE STUDY Page 6

SECTION 3

CASE STUDY

The remainder of this paper presents a case study in which

five test data generation techniques are employed to generate

five sets of test data for a simple program, TRITYP, which has

been studied elsewhere [1,5,9]. Mutation scores are assigned to

each set of data using the interactive FMS.2 mutation system []

As all the scores are less than 1, the mutation system is used

interactively to derive a set T such that ms(P,T) =1

Test Data Generation Methods

b The five test data generation techniques we study involve

different analyses of the program to be tested. They are:

Specifications, Statement, Branch and Domain Analysis (two

methods studied are variations of domain analysis).

Specifications analysis is a 'black box' approach to

program testing: it involves no analysis of the actual program.

Instead, an ad hoc and intuitive analysis of the program's

specifications is performed. The tester uses the specifications

to try to outguess the programmer and expose errors. Because of

the adversary nature of this technique, it has been recommended

that programmers not test their own programs, and even that

programs be tested by entirely different organizations [10].

Section 3 CASE STUDY Page 7

The next two methods are 'white box' testing techniques,

involving explicit and often complex analysis of the program

code. Of these, statement analysis is the simplest, requiring

only that a test data set cause every program statement to0 b e

executed by at least one test input. Automated systems exist

that backtrack from a statement, analyzing branching predicates

to produce a single predicate which, when satisfied by input

values, causes the appropriate statement to be executed [11].

roll Branch analysis places a stronger restriction on test data

sets, requiring not just that every statement be executed, but

that every branch be executed at least once [1,7,8]. Thus, every

branching predicate must evaluate to TRUE and to FALSE for some

different inputs in the test data set.

Domain analysis, the final test data generation strategy we

examine, may be used as either a black box or white box technique

[1,12]1. I n the black box approach, the program specifications

are used to partition the input space into contiguous convex

r e g io ns, c al Ie d domains, on which the, program is to compute

different functions. Test data are picked from each domain, each

boundary between domains, and points close to such boundaries.

The white box approach performs a similar analysis, but examines

the domains implicit in the program structure, rather than those

which ought to exist, given the program specifications. For

large numbers of domains and higher dimensions, the number of

test cases required by the black box technique becomes

unreasonably large. One heuristic for decreasing the number of

test cases is to pick them so as to satisfy several domain

Section 3 CASE STUDY Page 8

requirements at the same time; a single point may lie within a

domain and approach two domain boundaries, thus replacing three

separate test cases. For this study, black box domain analysis

was carried out twice, once without this heuristic and once with

it. We differentiate these slightly different techniques by cal-

ling them Domain Analysis and Minimized Domain Analysis, respec-

t ive ly.

Domain analysis was applied to a program with three input

variables for this study (published examples usually analyse

programs with two inputs). The analysis involves the partition-

ing of the first orthant of lattice three-space, plus the origin,

into one, two and three-dimensional subsets. Figure 1 is a

representation of this partitioning. We found this partition

fairly difficult to construct--applying this technique to

programs with more than three inputs would require partitioning

higher-dimensional spaces, while programs with inputs of

different types would require the partitioning of heterogeneous

input spaces.

The Program TRITYP

The simple FORTRAN program TRITYP in Figure 2 requires

three nonnegative integers as input, representing the relative

lengths of the sides of a triangle. An element of the set

(1,2,3,41 is output, denoting that the input triangle is

equilateral, isosceles, scalene or illegal, respectively.

Triangles with sides of zero length are legal, but other

Section 3 CASE STUDY Page 9

degenerate triangles are not (e.g. 3 3 6).

The behavior of TRITYP on negative inputs is not

consistent, so that its acceptance of negative inputs at all may

be seen as a specifications error. For the purposes of this

study, therefore, we will analyze the behavior of the program on

nonnegative inputs only. On all such inputs within the integer

range of the host machine, the behavior of TRITYP is correct.

The program TRITYP has been studied elsewhere [,5.91, and a very

similar program was discussed in [10].

Mutation Scores

Five sets of test data are generated for TRITYP. one aLL,

ding to each of the methods discussed above. Mutation score

then computed using the FMS.2 system; a summary of the results

appears in Figure 3, listed in order of increasing mutation

score.

The various mutant operators available on the FMS.2 muta-
p

tion system are discussed in some detail elsewhere [1]. For this

study, all of them are applied, producing 1035 mutants of the

program TRITYP. Of these, 69 are equivalent mutants. Thus

IM(TRITYP) = 1035, IEM(TRITYP)l = 69; that is, there are 966

non-equivalent mutants of TRITYP. The number of these non-

equivalent mutants killed by the various test data sets are used

to determine the respective mutation scores.

Section 3 CASE STUDY Page 10

It is apparant from the results in Figure 3 that size alone

is not the determining factor in our measure of data set

reliability. While the largest set, TD' is the most reliable,

the set TMD rated almost as high with less than half the size

(This is also evidence that the minimizing heuristic is

reasonable). Similarly, TB measured significantly better than

T p with 30% fewer test cases. This observation contradicts the

view that "the more test cases, the better," and demonstrates

that a few, well chosen test cases may be more reliable as well

as more economical than a larger set of less carefully chosen

data.

Surviving Mutants

None of the sets of test data studied killed all the non-

equivalent mutants of TRITYP. Since TRITYP is known to be

correct, each of these survivin.j mutants is a possible erroneous

program that would not have been detected by the test set it sur-

vived. These surviving mutants are thus specific examples of

inadequacies in the various testing methodologies--by studying

them in some detail, we may hope to discover in more general

terms the strengths and weaknesses of these methodologies. The

remainder of this section provides a brief discussion of the five

methodologies studied above, in light of their surviving mutants.

Section 3 CASE STUDY Page 11

Statement Analysis

Figure 4 provides examples of three mutants that survive

the data set TSt, output by the FMS.2 system. The second mutant

shown, in which GOTO 60 was replaced by CALL TRAP, was not detec-

ted because that line of code was not executed by any input in

TSt. The two lines of code

IF((I+J).LE.K)GOTO 50

GOTO 60

were treated as one statement during the generation of the set

TSt . This statement is executed by the input (3 3 8), but only

one branch of the predicate, to GOTO 50, is executed by that

input. It is this type of error which branch analysis attempts

to detect, by requiring that every branch be executed by some

input. The other two mutants shown were executed, but behaved

identically to TRITYP on those inputs. Thus, it may not be

enough to merely execute a statement or branch on only one input.

Specifications Analysis

Three mutants surviving both TSt and Tp are shown in

Figure 5. Once again, the appropriate program branches are not

executed by test data, and these errors would be undetected. As

an example, the first mutant, replacing IF(I+K.LE.J)GOTO 50 with

IF(J+K.LE.J)GOTO 50, will only be detected by input with I equal

to K, and I+K J. When a tester attempts to exercise paths by

altering various input parameters, but without explicit knowledge

Section 3 CASE STUDY Page 12

of the code or without tracing the logic of the code, such errors

may easily remain undetected.

Branch Analysis

Every branch in the program TRITYP is executed by one of

the nine inputs in TB , and this set succeeds in killing the

mutants mentioned in the previous sections, despite being a smal-

ler set than TSp. The simple analysis of TRITYP required to

produce TB has a payoff in high reliability with a small number

of test cases. Examples of mutants that do survive appear in

Figure 6. In the first one,

IF(I+J.LE.K.OR.J+K.LE.I.OR.I+K.LE.J)GOTO 50 4

IF(J+J.LE.K.OR.J+K.LE.I.OR.I+K.LE.J)GOTO 50.

This error is not detected because of the complexity of the

branching predicate--only a few of the subexpressions are exer-

cised by the test data. This is an example of an error in

processing a particular domain, as this predicate defines the

region of input space of illegal but distinct integer triples.

Domain Analyses

There were very few mutants that survived the sets TMD and

TD , and in fact those surviving TD are a subset of those surviv-

ing TMD. The survivors are all shown in Figure 7. Many of these

involve the ZPUSH operator, which changes its argument only when

it is zero. It then evaluates to the largest permitted integer.

Section 3 CASE STUDY Page 13

This operator is intended to explore the behavior of the program

when variables have the value zero, a frequently important

special case. The last few mutants in Figure 7 are of less

debatable significance. These are examples of simple errors in

which program constants replace variables, e.g.:

40 IF(J+K.LE.I)GOTO 50

40 IF(J+3.LE.I)GOTO 50.

As Figure 8 shows, each of these mutants computes incorrect

values for portions of two domains. Unless test data is chosen

from one or more of these regions, the errors go undetected. It

is an accident that some of these mutants were killed by each of

TSt, TSp. TB and all of them by TD . None of the five test data

generation schemes studied checks specifically for this type of

code-dependent error.

Intuitively, domain analysis is a stronger technique than

statement or branch analysis, and our study quantifies this

qualitative appraisal.

Test Data Generation Using the Mutation System

The mutation operators of the FMS.2 mutation system have

been specifically designed to detect statement, path and domain

errors, among others. During interactive use, an operator may

examine mutants not killed by the current test data, and generate

new input to kill those particular mutants. Starting with the

specifications analysis test data set TSp, this technique is

employed to generate 36 test cases (data set TMS), which kill all

Section 3 CASE STUDY Page 14

non-equivalent mutants of the program. Thus, ms(TRITYP,TM) = 1.

Examination of TMS reveals test cases similar to those generated

by domain analysis. In fact, many of these test cases are alter-

nate choices for domain analysis, in that they explore the same

domains and domain boundaries. As an example, the input (2 1 0)

of mutation analysis explores the same domain boundary (see

Figure 1) as (71 40 30), an input from domain analysis; the boun-

dary region described by the equation I + K + 1 = I.

Conclusion

This paper presents a technique for objectively evaluating

the reliability of test data generation methods, relative to a

particular program. It is possible that for radically different

programs, different results could be obtained, although our

previous studies have not shown any particular b!sitivity to

program choice. Fox the single program studied, three of the

generation techniques ranked in order of the complexity of

program analysis that each requires (statement, branch and domain

analysis). It is an interesting point that the fourth technique,

specifications analysis, was less reliable than the relatively

simple branch analysis--specifications analysis is so difficult

to apply effectively as to be judged an art by its proponents

(10]. The slight difference in scores for domain and minimized

domain analysis suggest that the small loss in reliability of the

latter technique may be effectively sacrificed in return for a

smaller set of test data, an important consideration when tezt

runs are expensive. The objective reliability measure presented

Section 3 CASE STUDY Page 15

here can be combined with economic and efficiency considerations,

to permit a data processing manager to make an effective,

informed choice between testing methodologies.

k.

Section 4 References Page 16

SECTION 4

References

[I] A. Acrce, T. Budd, R. DeMillo, R. Lipton, and F.

Sayward, "Mutation Analysis", Georgia Institute of Tech-

nology Technical Report GIT-ICS-79/08, September, 1979.

[2] A. Acree. On Mutation. PhD thesis, Georgia Institute of

Technology, 1980.

[3] T. Budd, Mutation Analysis of Program Test Data. Phd

thesis, Yale University, in preparation.

[41 T. Budd, R. DeMillo, R. Lipton, and F. Sayward,

"Theoretical and Empirical Studies on Using Program Muta-

tion to Test the Functional Correctness of Programs", Proc.

ACM Symp. on Principles of Programming Languages, pp.

220-33. January, 1980.

[5] R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Hints on

Test Data Selection: Help for the Practicing Programmer",

COMPUTER, Vol. 11, #4. April 1978.

[6] J.M. Hanks Testin Cobol Projrams by Mutation. MS thesis,

Georgia Institute of Technology, 1980.

[71 W.E. llowden "Reliability of the Path Analysis Testing

Strategy". IEEE Transactions on Software Engineering, Sep-

tember 1976.

(8] J.C. Huang, "An Approach to Program Testing", ACM Comput-

Section 4 References Page 17

ing Surveys, September, 1975.

[9] R.J. Lipton and F.G. Sayward, "The Status of Research on

Program Mutation", Digest for the Workshop on Software

Testing and Test Documentation, pp. 355-73. December,

1978.

[10] G.J. Myers, The Art of Software Testing: John Wiley and

Sons (1979) New York, NY.

[11] L.J. Osterweil and L.D. Fosdick, "Experience with DAVE--A

Fortran Program Analyzer", Proc. 1976 NCC, AFIPS Con-

ference Record, pp. 909-15.

[12] C.V. Ramamoorthy, S.F. Ho, and W.T. Chen, "On the

Automated Generation of Program Test Data", IEEE Transac-

tions on Software Engineering pp. 293-300. December 1976.

[13] L.J. White and E.I. Cohen "A Domain Strategy for Computer

Program Testing", Digest for the Workshop on Software Test-

ing and Test Documentation pp. 335-54. December, 1978.

I

Figure l.a

Domain analysis: side view of input space.

Triangular, pyramidal region contains inputs

describing legal triangles.

i

f IJ K) = 2

f(1,J,,K) - 2

h/

Figure 1 .b

Pyrar.iaal rc,,iorn of Figure 1.a, in cross-section

perpendicular to the I='JI. ray.

FIGURE 2

SUBROUTINE TRITYP(I.J,K,CODE)
C... .1,3, AND K ARE SIDES OF THE PROPOSED TRIANGLE
C... .CODE RETURNS THE TYPE OF THE TRIANGLE
C... CODE = 1 FOR EQUILATERAL
C ... CODE =2 FOR ISOSCELES
C ... CODE =3 FOR SCALENE
C ... CODE =4 FOR AN IMPOSSIBLE TRAINGLE
C

INTEGER I,J,K,CODE
INPUT I,J.,K
RDONLY I,J,K
OUTPUT CODE
INTEGER MATCH

C
C C... COUNT MATCHING SIDES

MATCH = 0

IF(I.EQ.J)MATCH = MATCH + 100
*IF(I.EQ.K)MATCH = MATCH + 200
*IF(J.EQ.K)MATCH = MATCH + 300

C
C ... SELECT POSSIBLE SCALENE TRIANGLES

IF(MATCH.EQ.O)GOTO 10

v C
C ... SELECT POSSIBLE ISOSCELES TRIANGLES

IF(MATCH.EQ.100)GOTO 20
IF(MATCH.EQ.200)GOTO 30
IF(MATCJl.EQ.300)GOTO 40

C
C... TRIANGLE MUST BE EQUILATERAL

CODE =1
RETURN

C
C ... POSSIBLE SCALENE
10 IF((I4J).LE.K.OR.(J+K).LE.I.OR.(I+K).LE.J)GOTO 50

CODE =3
RETURN

C
20 IF((I+J).LE.K)GOTO 50

GOTO 60
C
30 IF((I+K).LE.J)GOTO 50

GOTO 60
C
40 IF((J-4K).LE.I)GOTO 50)

GOTO 60
C
C ... NO TRIANGLE POSSIPLL
50 CODE = 4

RETURN
C
C ... ISOSCELES
60 CODE = 2

RETURN
END

FIGURE 3

SUMMARY OF RESULTS

Test Data Size of Test Number of Mutation
To.Generation Data Set: Mutants Killed: Score:
IPTechnique ITI IDM(TRITYP,T)I ms(TRITYP,T)

Statement
Analysis 5 660 .68

Specifications
Analysis 13 792 .82

Branch
Analysis 9 821 .85

Minimized
Domain Analysis 36 943 .976

Doma in
Analysis 75 951 .984

FIGURE 4

SELECTED MUTANTS SURVIVING DATA SET TSt

MUTANT NUMBER 40

IF(I .EQ. 3) MATCH = MATCH + 100

BECOMES

IF(I .EQ. J) CODE = MATCH + 100

MUTANT NUMBER 930

GOTO 60

BECOMES

CALL *rRAP

MUTANT NUMBER 425

20 IF(I + I .LE. K) GOTO 50

BECOMES

20 IF(I + 1 .LE. K) GOTO 50

V- ------------------- -------------

FIGURE 5

SELECTED MUTANTS SURVIVING DATA SETS TSt AND TSp

MUTANT NUMBER 150

30 IF(I + K .LE. J) GOTO 50

BECOMES

30 IF(J + K .LE. J) GOTO 50

MUTANT NUMBER 899

30 IF(I + K .LE. J) GOTO 50

BECOMES

30 IF(I + K .LE. -ABS J) GOTO 50

MUTANT NUMBER 1030

40 IF(J + K .LE. 1) GOTO 50

BECOMES

40 IF(J + K .LE. I) GOTO 60

FIGURE 6

SELECTED MUTANTS THAT SURVIVE TB

MUTANT NUMBER 98

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(J + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

MUTANT NUMBER 375

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + J .LE. K .OR. 2 + K .LE. I .OR. I + K .LE. J) GOTO 50

MUTANT NUMBER 798

IF(I .EQ. J) MATCH = MATCH + 100

BECOMES

IF(ZPUSH I .EQ. J) MATCH = MATCH + 100

FIGURE 7

MUTANTS SURVIVING BOTH TMD AND TD

MUTANT NUMBER 843

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(ZPUSH I + J .LE. K .OR. J + K .LE. I .0R. I + K .LE. J)

*GOTO 50

MUTANT NUMBER 846

10 IF(I + J .LE. K .OR. J1 + K .LE. I OR1. I + K .LE. J1) GOTO 50

* BECOMES

10 IF(I + ZPUSH 3 .LE. K .0R. J + K .LE. I .0R. I + K .LE. J)

*GOTO 50

MUTANT NUMBER 852

* 10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. 3) GOTO 50

BECOMES

10 IF(I + J .LE. ZPUSH K .OR. J + K .LE. I .0R. I + K .LE. J)

*GOTO 50

MUTANT NUMBER 855

10 IF(I + J .LE. K OR1. I + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + 3 .LE. K .0R. ZPUSH J + K .LE. I OR. I + K .LE. 3)

*GOTO 50

FIGURE 7, CONTINUED

MUTANT NUMBER 858

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + I .LE. K .OR. J + ZPUSH K .LE. I .OR. I + K .LE. J)

* GOTO 50

* MUTANT NUMBER 864

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + J LE. K OR. J + K LE. ZPUSH I OR. I + K LE. J)

* GOTO 50

MUTANT NUMBER 867

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. 3) GOTO 50

BECOMES

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. ZPUSH I + K .LE. J)

* GOTO 50

MUTANT NUMBER 870

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + ZPUSH K .LE. 3)

* GOTO 50

4

FIGURE 7, CONTINUED

MUTANT NUMBER 876

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. J) GOTO 50

BECOMES

10 IF(I + J .LE. K .OR. J + K .LE. I .OR. I + K .LE. ZPUSH J)

GOTO 50

MUTANT NUMBER 879

20 IF(I + J .LE. K) GOTO 50

BECOMES

20 IF(ZPUSH I + J .LE. K) GOTO 50

MUTANT NUMBER 882

20 IF(1 + 3 .LE. K) GOTO 50

BECOMES

20 IF(I + ZPUSH J .LE. K) GOTO 50

MUTANT NUMBER 885

20 IF(I + J .LE. K) GOTO 50

BECOMES

20 IF(ZPUSH (I + J) .LE. K) GOTO 50

MUTANT NUMBER 903

40 IF(J + K .LE. I) GOTO 50

BECOMES

40 IF(ZPUSH J + K .LE. I) GOTO 50

FIGURE 7,CONTINUED

MUTANT NUMBER 906

40 IF(J + K .LE. I) GOTO 50

BECOMES

40 IF(J + ZPUSH K .LE, I) GOTO 50

MUTANT NUMBER 909

40 IF(J + K .LE. I) GOTO 50

BECOMES

40 IF(ZPUSH (J + K) .LE. I) GOTO 50

MUTANTS SURVIVING TMD, KILLED BY TD

MUTANT NUMBER 419

20 IF(I + J .LE. K) GOTO 50

BECOMES

20 IF(3 + J .LE. K) GOTO 50

MUTANT NUMBER 421

20 IF(I + J .LE. K) GOTO 50

BECOMES

20 IF(2 + J .LE. K) GOTO 50

MUTANT NUMBER 426

20 IF(I + J .LE. K) GOTO 50

BECOMES

20 IF(I + 3 .LE. K) GOTO 50

FIGURE 7, CONTINUED

MUTANT NUMBER 428

20 IF(I + I .LE. K) GOTO 50

BECOMES

20 IF(I + 2 .LE. K) GOTO 50

MUTANT NUMBER 465

40 IF(J + K .LE. 1) GOTO 50

BECOMES

40 IF(3 + K .LE. 1) GOTO 50

MUTANT NUMBER 467

40 IF(J + K .LE. 1) GOTO 50

BECOMES

40 IF(2 + K .LE. 1) GOTO 50

MUTANT NU' 'R 472

40 IF(3 + K .LE. 1) GOTO 50

BECOMES

40 IF(J + 3 .LE. 1) GOTO 50

MUTANT NUMBER 474

40 IF(J + K .LE. I) GOTO 50

BECOMES

40 IF(J + 2 .LE. 1) GOTO 50

Figurc 8.a It

/ '4)"

1=0

Cross-sectior of Ihe input space Cthrullii the

3=K plane), showiiig purtions of four dor:.iris.

Except for the I=J K domjain, these in~puts

execute the stat crieni

40 11 (j) .L h. I) 6 'Y'0
(3 0:0 6 0

Inputs in the shedc(' rcgior saiLi st', the rc J i t io i

and follow the.~ f ir,.* 1 ir a n

Figure 8.L

The cross-scctior. of Figure .".a. with, cie lJ+3

line added. The ru~ilit s abr.'c and on th' lin e

satisfy the coitditioa in the :..uitart.

40 F ~j 3) .LL. I)GOTO 50
60*1B) 60

and L'ol 1(w LI, s Ls ~r a ch . in1,u ts ~i,: ici shaded

r L F i o r. S .1 1 T'I t' t r c L.I b:~ k I i an t

Uic lass i i led
SECURITy CLASSIFICATION OF THIS PAGE Who.n Ilae Entered)

REPORT DOCUMENTATION PAGE B RE COMPLETIORYREPFiT CAOEG MBER

l~ RE~oftTNuM~eft 2.GOVT ACCESS ON NO 3. RECIPIENT'S CTLGNMF
(. (IT-ICS-81/08 f

6 TITLE (and Suhfitl) 4 TYP1-O" ItEO*4;t 4h, "LaO~ C."

A Comparison of Some Reliable Test Data
Generation Procedures4 D a lERFONG ORG. REPORT N;;l w a

CIT-ICS-81/08
7. A.TNDR(*) 8. 1 O RACT OR GRANT NUMBER(s)

/1 Richard A.,'DeMillo /"

Daniel E./qocki -ng APO 4bAAG29-80-C-0l 2(,,Michael J./Merritt ONSR N 0014-7 9-C-2 1',
9. PERFORMING ORGANIZATION NAME AND AODPESS 10. PROGRAM ELEMENT, PROJECT. TASK

School of Information and Computer Science AREA 8 WORK UNIT NUMBERS

/ ./

Georgia Institute of Technology ''

Atlanta, Georgia 30332 /
4I. CONTROLLING OFFICE NAME AND ADDRESS 12. REIP~pI

Army Research Office Office of Naval Researc 1981
PO Box 12211 800 N. Quincy Street 13. NUMBER OF PAGES
Research Triangle Park, NC Arlingtona Virginia 30 + ii
14. MONITORING AGENCY NAME & ADDRESS(If ditferent from Controlling Office) IS. SECURITY CLASS. rof this retort)

- unclassified

• '> " " S . D E C L A S S IF IC A T IO N 'D O W N G R A OIN G
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT AI.Iunlimited Appxov.ed for pchtlic release;

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It dlfferent from Report)

unlimited

IS SUPPLEMENTARY NOTES

19. KEY WORDS (Continue cn foveve side ft neceoosry and Identify by block number)

softw reli]]ability, program testing, mutation analysis

20. ABSTRACT (Co tin. on reweree side it neceeaey and identlf by block number)

A set o? mutants of a program P, M(P), is a finite subset of the set of all
programs written in the language of P, and EM(P) is the set of programs in M(P)
which are (flimctienally) equivalent to P. For a set of test data T, DM(P,T) is
the set of prograliv in M(P) which give results differing from P on at least one
point in T. A mutItion score for P,T is defined as follows:

j DM (P T)
ms(P,T) = T (P I EM(P)

DD jAi73 1473 EDITION OF I NOV65 5C SOLETE unclassified N
S/N 0102-014- 6601'/TI AE(inbr nae.

- .SECURITY CLASSIFICATION OfTHSPC 11i DtEne)s/I o-L,-'l/.i_ d:i SC~rC.,.,~,..r,7. ,,...,,.,

unclassif ted

_.41ITY CLASSIFICATION OF THIS PAGE'Whon Data Entered)

20. As described elsewhere, it is possible to choose the function M so that
ms(P,T) = I only if T demonstrates the correctness of P with high probability.

This paper is a case study of four test dat;, generation schemes. For a
fixed program P, five sets of test data are generated and mutation scores are
calculated using the FMS.2 mutation system. SinLe each set has a score less
than one, the FMS,2 system is used to derive a set T such that ms(P,T) - 1.

SECURITY CLAS: AFICATION OF THIS PAGEPPIn Data Fneoed

